Package: mxnorm 1.0.3
mxnorm: Apply Normalization Methods to Multiplexed Images
Implements methods to normalize multiplexed imaging data, including statistical metrics and visualizations to quantify technical variation in this data type. Reference for methods listed here: Harris, C., Wrobel, J., & Vandekar, S. (2022). mxnorm: An R Package to Normalize Multiplexed Imaging Data. Journal of Open Source Software, 7(71), 4180, <doi:10.21105/joss.04180>.
Authors:
mxnorm_1.0.3.tar.gz
mxnorm_1.0.3.zip(r-4.5)mxnorm_1.0.3.zip(r-4.4)mxnorm_1.0.3.zip(r-4.3)
mxnorm_1.0.3.tgz(r-4.4-any)mxnorm_1.0.3.tgz(r-4.3-any)
mxnorm_1.0.3.tar.gz(r-4.5-noble)mxnorm_1.0.3.tar.gz(r-4.4-noble)
mxnorm_1.0.3.tgz(r-4.4-emscripten)mxnorm_1.0.3.tgz(r-4.3-emscripten)
mxnorm.pdf |mxnorm.html✨
mxnorm/json (API)
# Install 'mxnorm' in R: |
install.packages('mxnorm', repos = c('https://colemanrharris.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/colemanrharris/mxnorm/issues
- mx_sample - Sample multiplexed dataset for 'mxnorm'.
Last updated 2 years agofrom:ac6cd78772. Checks:OK: 1 NOTE: 5 ERROR: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | NOTE | Nov 21 2024 |
R-4.5-linux | NOTE | Nov 21 2024 |
R-4.4-win | NOTE | Nov 21 2024 |
R-4.4-mac | NOTE | Nov 21 2024 |
R-4.3-win | NOTE | Nov 21 2024 |
R-4.3-mac | ERROR | Nov 21 2024 |
Exports:mx_datasetmx_normalizeplot_mx_densityplot_mx_discordanceplot_mx_proportionsplot_mx_umaprun_otsu_discordancerun_reduce_umaprun_var_proportions
Dependencies:ashBHbitopsbootcaretclasscliclockclustercodetoolscolorspacecpp11data.tabledeSolvediagramdigestdplyrdqrnge1071fansifarverfdafdsFNNforeachforeignfossilfuturefuture.applygenericsggplot2globalsgluegowerGPArotationgtablehardhathdrcdehereipredirlbaisobanditeratorsjsonlitekernlabKernSmoothkskSampleslabelinglatticelavalifecyclelistenvlme4locfitlubridatemagrittrmapsMASSMatrixmclustmgcvminqamnormtModelMetricsmulticoolmunsellmvtnormnlmenloptrnnetnumDerivparallellypcaPPpillarpkgconfigplyrpngpracmapROCprodlimprogressrproxypsychpurrrR6rainbowrappdirsRColorBrewerRcppRcppAnnoyRcppEigenRcppProgressRcppTOMLRCurlrecipesreshape2reticulaterlangrpartrprojrootRSpectrascalesshapeshapefilessitmospSQUAREMstringistringrSuppDistssurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8uwotvctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Generates mx_dataset | mx_dataset |
Normalizes multiplexed data | mx_normalize |
Sample multiplexed dataset for 'mxnorm'. | mx_sample |
Visualize marker density before/after normalization by marker and slide | plot_mx_density |
Visualize Otsu discordance scores by marker and slide | plot_mx_discordance |
Visualize variance proportions by marker and table | plot_mx_proportions |
Visualize UMAP dimension reduction algorithm | plot_mx_umap |
Extension of 'print' S3 method to print 'summary.mx_dataset' objects | print.summary.mx_dataset |
Calculate Otsu discordance scores using specified threshold for an 'mx_dataset' object. | run_otsu_discordance |
Run UMAP dimension reduction algorithm on an 'mx_dataset' object. | run_reduce_umap |
Run random effects modeling on 'mx_dataset' object to determine proportions of variance at the slide level | run_var_proportions |
Extension of 'summary' S3 method to summarize 'mx_dataset' objects | summary.mx_dataset |